An Agent-Based Model of Infectious
Diseases that Incorporates the Role
of Immune Cells and Antibodies
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Abstract This paper constructed an agent-based infection model that focused on
the recovering process modeling and obtained the following results. The mecha-
nism of pandemic convergence is that the probability of a healthy person’s encoun-
tering an infected person decreases progressively as the number of recovered people
increases and the total number of viruses in the system decreases due to immu-
nity. The existence of antibodies promotes recovery but is not an essential factor for
pandemic convergence. By assuming the effect of immunity being proportional to
the number of viruses rather than assuming a constant value, the model well repro-
duced the actual trend of the number of infected and recovered persons. This result
suggests that the medically well-known fact that fever associated with infection
enhances immunity is an essential requirement for pandemic convergence. Iden-
tifying and isolating infected persons is critical to overcome the pandemic and
minimize economic deterioration, especially at the border of the system, such as
airports. Individual persons recognizing the state of infection by self-monitoring
body temperature is also adequate for the pandemic convergence.

Keywords Agent-based model - Infectious disease - SARS-CoV-2 « Immune
cells - Antibodies - Pandemic - Infection - Recovery

1 Introduction

Since the novel coronavirus, i.e., Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) was first discovered in December 2019 in China, SARS-CoV-2 has
spread worldwide, and the number of infections is still increasing in most countries.
Although the regulation of social movement has led to the number of infections
reaching a low level as of July 10, 2020 [1], many countries are beginning to ease
the tight control of social activity to recover the economy despite worries about the
emergence of a second wave of this SARS-CoV-2 pandemic.
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Many mathematical models for forecasting the emergence of a pandemic were
constructed long before the ongoing pandemic began [2—7]. Most of these models are
the type of system-dynamics models such as the SIR model or SIER model, consisting
of a set of equations to be solved simultaneously. The infection and recovery processis
modeled by only introducing a set of parameter variables representing the probability
of a healthy person’s infection and an infected person’s recovery. However, these
equation-based models have the fatal flaw of being unable to describe the complex
interactions among heterogeneous agents that are the essential cause of infectious
disease propagation. Furthermore, such models do not provide knowledge on the
factors influencing recovery or the occurrence of a second wave of the pandemic,
because they do not describe the post-infection recovery process from the bottom-up.

Agent-based modeling (ABM) is a modeling method suitable for describing the
heterogeneity of the behaviors of agents [8, 9]. In ABM, we construct an artificial
society on a computer that mimics the real world, aiming to reproduce various social
phenomena caused by the behaviors and interactions of agents from the bottom-up.
Thus, ABM is an effective way to understand the underlying mechanism and solve
economic and social problems [9-12]. ABM has various advantageous features, such
as being able to deal with heterogeneity and discrete phenomenon [8]; the essential
advantageous characteristic of ABM is that it is a bottom-up modeling method.

Because social phenomena emerge due to humans’ actions and interactions, we
canuse ABM to construct an artificial society that works according Lo the same princi-
ples as the real world. Notably, a model can work in this way only when that model is
entirely bottom-up without using any aggregate-variable-related assumptions. More-
over, the types of agents and their behavioral rules and the relevant variables, i.e., the
syslem structure, must be as realistic as possible Lo reflect micro-level phenomena
and thereby reproduce the macro-phenomena [10-12],

Although ABM has also been applied to diseases [13-16], most of the resulting
models are not fully bottom-up in that they employed aggregate-variable-related
assumptions. Ina few cases where the applied ABM was entirely bottom-up regarding
the spatial interaction among agents, the post-infection recovery process was not
modeled from the bottom-up in that infected agents were assumed to become immune
at a specific period after infection and never be infected again [13]. Thus, although
models of this type can mimic the spatial interactions among agents that cause
infection, they cannot reproduce the specific behaviors that increase or decrease
the numbers of newly infected, newly recovered, and total infected persons without
using macroscopic assumptions. Moreover, such models cannot predict the emer-
gence of the second wave of a pandemic after easing regulations concerning social
movement.

According to statistical data [1], the number of total infected, newly infected, and
newly cured persons peaked at different periods [1]. Conventional models cannot
explain these features without using macroscopic assumptions, neither the equation-
base model nor the ABM model.

According to the medical findings, when a person is infected, the viruses enter the
host’s body and replicate repeatedly, increasing the number of viruses. Regarding
the function of innate immune cells and antibodies, it is well known [17] that innate
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immune cells are the first to attack the virus, followed by antibodies. Typically,
antibodies are produced after a certain period of time, and they join the fight against
the virus.

Based on these medical findings, the fundamental factor that characterizes the
infectious state is the virus, and the essential factors that characterize the recovery
process are immune cells and antibodies. However, few previously reported epidemic
models take these micro-factors into account. Based on this, the present research
developed an agent-based model that incorporates the role of immune cells and
antibodies and the number of viruses, and compared the resulting data with real-
world statistical data. The underlying mechanism for the spread of infection and
convergence, and the conditions for balancing infection control and promotion of
the economy, are discussed.

2 The Model
2.1 Model Outline

This model considers the role of immune cells and antibodies and the number of
viruses. The interactions among agents are simplified. assuming random movement
of agents. The behavior of viruses, immune cells, and antibodies is modeled as
faithfully as possible based on the medical knowledge available in the literature [17,
18], taking into account the heterogeneity of agents.

In this model, the human agent is the only object that moves randomly in the two-
dimensional space of 1 km? every period. The number of human agents is assumed to
be 2000, and their initial positions in the 2-dimensional space are assigned randomly
for each agent. The movement distance and the direction are assigned every period
by a uniform random number, as given in Table 1. One of the individual humans is
initially the infected agent, possessing many viruses, i.e., viral particles, the number
of which is an attribute variable. An agent is assumed to meet with another agent
to become a neighbor when located within the critical distance, which is assumed
to be 5 m. The infected human is assumed to release some of the viruses every
period at a predetermined virus-releasing rate in the form of a cough or other means.
Thus, any agent who meets the infected neighbor receives a portion of the released
viruses at a predetermined virus-absorbing rate, becoming a newly infected agent. A
decrease in the virus-absorbing rate corresponds to wearing masks or face shields in
the real world. The increasing increment of the number of viruses transferred from
the infected to a healthy individual is assumed as given by Eq. (1).

i - J 5 j , i
AN!nfecred @) = Z Ny p(1) # Rateg e * Rate;bsorb
jeneighbors (1)
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Table 1 Attribute variables
of agents and parameter
values

S. Ogibayashi
Variables Initial value or definition
Number of agents 2000
Area of network system 1000 x 1000
Maximum distance of agent’s 100,200
move
Critical distance for infection 5
Initial number of the infected 1
Number of viruses hold by the 5000 x 100 (arbitrary unit)
infected initially
Virus replication rate 14,1.6,1.8,2.0

Virus attack rate by immune cells

0.3 & 0.1 uniform random
number

Virus attack rate by antibodies

0.5 =+ 0.1 uniform random
number

Virus-count multiple for antibody
emergence

0.5 £ 0.2 uniform random
number

Elapsed period after infection for
antibody emergence

7 £ 2 uniform random
number

Minimum number of viruses,
below which

number of viruses is assumed
zero

10e-9 (arbitrary unit)

Virus releasing rate

0.1 £ 0.05 uniform random
number

Virus absorbing rate

0.1 £ 0.05 uniform random
number

Position (x, y) in the two Defined at every step

dimensional space

Distance of agent’s move [0, maximum distance]
uniform random number

Direction of agent’s move [0, 27] uniform random
number

Agent in the neighbor Defined at every step

Number of viruses of each agent | Calculated at every step

where, AN;"f,“,d(t) : Number of viruses of agent i transferred

from neighbor agents at the time t

N{;P(t) : Number of viruses of agent j at the time t

J .
Rategease -

Virus releasing rate of agent j

Ratel,.,., : Virus absorbing rate of agent i
If an agent is infected, immune cells attack the viruses at every time step, reducing
their numbers at a predetermined virus-attack rate of immune cells or antibodies. The



An Agent-Based Model of Infectious Diseases ... 175

decreasing increment of the number of viruses at time t is assumed to be proportional
to the number of viruses, as given by Eq. (2). Here, the virus-attack rate is assumed
to be a larger value if antibodies are present. Antibodies are assumed to emerge that
attack the viruses at a greater rate than that of immune cells, after a predetermined
antibody-emerging period, if the agent’s viral particles exceed the minimum number.
This minimum number of viruses required for antibody emergence is assumed to be
the product of the number of viruses and the predetermined minimum-virus-count-
multiple. The conditions required for the emergence of antibodies is assumed, as
given by Eq. (3).

For comparison, an additional series of experiments in which the right side of
Eq. (2) is assumed to be a constant value, was also conducted to better understand
the mechanism by which immune cells or antibodies reduce the number of viruses and
indispensable factors for the pandemic convergence.

AN:/P(I) = N{/P(I) * Rate;:mck ()

where, AN{,P(t) : Decreasing increment of the number of viruses
during the timestept

Ratel,,... = Virus attack rate of immune cells or antibodies

and Ny, p(t) > Ni p(th oo o) * Multiple!

i i .
'~ finfected ~ raMrtboa’y_err:crglﬂg antibody_emergence

(3)

where, t: Current time t; . .4

Time of infectionof agent i
¥

antibody_emerging - Elapsed period for antibody emergence of agent i
after infection

Mu[n'ple;mibady_eme,gme : Virus count multiple for antibody emergence

The resultant viruses are assumed to multiply, increasing in number, due to viral
replication at a predetermined virus replication rate. The virus replication rate repre-
sents the rate of increase in the number of viruses per time step, and is assumed to
be constant during the calculation. Thus, the number of viruses is redefined at every
time step in the calculation according to Eq. (4).

Nyp(t+1) = (1 - Ratepy ey, — Rateg, o) * Ny p(t) = Rategrown + ANI'nfccted(Ii
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where, Rateperase : Virus releasing rate of agent i
Rateyaer © Virus attack rate of immune cells or antibodies of agent i
Rategrouwn @ Virus replication rate defined as a constant value

AN";nfmﬂd(t) . Increasing incerment of the number of viruses due to infection
When the number of viruses of an agent becomes smaller than the critical lower

limit, it is assumed to be zero as given by Eq. (5); at this time, the agent state changes

from infected to recovered, being classified as newly recovered. Here, the number

of viruses is an arbitrary unit, so it could be below 1 in the present model.

Nip(0) =0, if Nip(0) < Noy ®)

where, N, : Rumi * Virus releasing rate = Virus absorbing rate

Nimit @ Critical value for zero viruses assumed as 1077

The attribute variables of agents and parameter values are presented in Table 1,
where the variables that are defined by a uniform random number are agent-specific
variables.

The present model does not incorporate agent death because it requires a massive
population, meaning that the calculation time needed becomes too large. Moreover,
the death rate is so low compared with the infection rate that it is not an essential factor
in the mechanism of infection spread and convergence. Therefore, all the infected
agents finally become recovered in this model unless the virus replication rate is
assumed too large.

The model is programmed by the author using C++ with object-oriented
programing. The fundamental classes used in the model are “Human,” which moves
randomly, “Germ,” which is held by a Human class and responsible for the calculation
of virus-related variables, and “Network,” which manages the position of Humans
and is responsible for the calculation of infection among agents. These classes refer
to infection-related variables among each other.

The calculation is processed according (o the following steps. The flowchart of
the calculation is presented in Fig. 1.

(a) Define parameter values.
(b) Create various class objects and set initial values for the variables.
(c) Repeat the following steps until the maximum time step is reached.

{c-1) For each agent, redefine the agent’s position, define the neighbor agent, calculate
the change in the number of viruses, and print out the agent’s attribute variables. The
agent’s attribute variables include the number of viruses transferred from infected
agents at the time of new infection, the decrease in the number of viruses due to the
role of immune cells or antibodies, the increase in the number of viruses due to virus
replication, various state variables.

(c-2) Calculate aggregate variables, such as the numbers of infected agent and
recovered agents, and print out the results.
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START

Define parameter values

I

Creale classes and set initial values of variables

Redefine the position of agents
I

Define the neighbor agents

Calculate and redefine the virus-related variables

I

Print out attribute variables of agents

S B @)

Calculate infection-related aggregate variables
I
Print out calculated results

End

Fig. 1 The flowchart of the calculation

3 Experimental Conditions

3.1 Analysis Items at Each Time Step

The characteristic variables calculated at every time step are divided into agent’s
attributes variables and state variables of the system and given in Table 2.

The former variables include agents as objects located in the neighbors responsible
for the mutual infection and determined based on the distance among agents in the
two-dimensional space. The latter variables include the numbers of infected agents,
newly infected agents, newly recovered agents with or without antibodies. The time
changes of the calculated state variables were compared with the statistical data
available in the real world.
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1. Agent’s attributes variables

Number of viruses

Position in the two-dimensional space

Agents as objects located in the neighbor

Number of infected or uninfected neighbors

Number of viruses increased due to infection
Infection-related state variables

Uninfected, Infected and recovered with or without antibodies
2. State variables of the network system

Average numbers of neighbors, infected neighbors and
uninfected neighbors

Number of infected agents

Number of newly infected agents

Number of newly recovered agents

Number of recovered agents with antibodies

Number of recovered agents without antibodies

Number of viruses in the system which is the sum of each
agent’s viruses

Table 2 Characteristic
variables calculated at every
time step

3.2 Experimental Conditions

The influence of the following factors on the abovementioned variables was analyzed:
(1) virus replication rate, (2) maximum traveling distance, (3) virus-absorbing rate
(accounting for mask use), and (4) regulations and mitigations of agent movement
that include the temporal regulation of traveling distance with or without reducing
the virus-absorbing rate, and (5) existence of antibodies.

4 Calculated Results

4.1 Fundamental Behavior During Infection and Recovery

4.1.1 Behavior of the Number of Viruses Possessed by Each Agent
During Infection Spread and Convergence

This model can calculate the number of viruses possessed by each agent at each time
step. The aggregate variables, such as the numbers of infected agents and recovered
agents, are evaluated at each time step based on this value, as explained in the previous
section. Figure 2 shows an example of the change in each agent’s number of viruses
in the first stage of infection spread. In this example, the virus-replication rate and the
maximum traveling distance are assumed to be 1.8 and 100, respectively. Figure 1
shows how infections propagate from agent to agent in this artificial system. This
example of calculated results shows that Agent 1 is the only infected agent initially,
and Agent 13 is infected by Agent 1 at time step 4. The next agent who is infected by
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Fig. 2 Changes in the number of viruses of agents who are sequentially infected during the initial
stage of infection spreads (Infection spread sequence: Agent 1 — 13 — 1373 — 1019 — 1911,
Virus replication rate = 1.8)

Agent 1 is Agent 155 at time step 25. However, before Agent 155 is infected, Agent
13 infects Agent 1373 at time step 6, and infection propagates from Agent 1373 to
Agent 1019, and from Agent 1019 to Agent 1911. In this way, this model allows
individual tracking of the details of the infection process. The same is true for the
Tecovery process.

Note that, in Fig. 2, the slope of the change in the number of viruses appears
positive or negative just after the infection. Here the slope in the number of viruses
depends on the relative magnitude of the relationship between the virus replication
rate and the immune attack rate. If the effect of replication is larger than that of
immune cells, the slope becomes positive, and vice versa. Moreover, note that, after
some infection period, the slopes of all agents become negative, and their magnitudes
become more extensive due to the emergence of antibodies. The slope’s magnitude
is different for each agent due to the agent-specific value of the antibody attack rate.
Thus, the number of viruses possessed by each infected agent decreases with time,
at least after the antibody emergence.

During infection and recovery, an agent could be infected multiple times. Figure 3
shows such an example. Note that, as seen in Agent 1556 in Fig. 3, the rate of
propagation of viruses may change over time, as seen by a decrease in the number
of viruses, due to the emergence of antibodies. In Agent 613, there is no speed
change during the decrease in the number of viruses, indicating that the agent has
recovered before the emergence of antibodies. Whether antibodies emerge or not
depends on the number of viruses at the time of infection, the agent-specific value
of the antibody-emerging period, and the immune-cells’ virus attack rate.

Figures 4 and 5 show the trends in the number of viruses during infection spread
and convergence. The number of viruses possessed by each agent at the time of
infection decreases during infection spread and convergence, as shown in Fig. 4.
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Fig. 3 Examples of cases where agents are infected multiple times. The calculation conditions are
the same as in Fig. 1
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Fig. 4 Number of viruses at the time of infection as a function of time during infection spread and
convergence (virus replication rate = 1.6)

This trend reflects the effects of the virus-releasing rate, the virus-absorbing rate, the
virus attack rate of immune cells or antibodies and the virus-replication rate. Namely,
when an infection occurs, a healthy person receives a portion of the viral particles
released by the infected person due to a cough or by other means, and the emitted
viral particles are a portion of the viruses possessed by the infected person which
decreases with time if the effect of the virus attack rate of immune cells or antibodies
is larger than the effect of virus-replication rate. Thus, the number of viruses at the
time of infection decreases during the propagation process because viral particles
transferred from an infected to a healthy person are only a portion of the viruses held
by that infected person which decreases with time due to the effect of immunity. It
is noted that total number of viruses in the system also decreases with time due to
the effect of immunity.
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Fig. 5 Time required for recovery as a function of the number of viruses at the time of infection
(virus replication rate = 1.6)

Note that, as the number of viruses at the time of infection decreases, the time
required for recovery becomes shorter, as shown in Fig. 5. This result indicates that
the time necessary for an infected person to recover becomes faster with time as the
number of viruses at the time of infection decreases during the process of infection
spread and convergence.

4.1.2 Effect of Virus Replication Rate on the Numbers of Infected
and Recovered Agents

This section describes the calculated numbers of infected and recovered agents in
the case without any countermeasures against disease, where the maximum distance
of movement, the virus-absorbing rate, and the virus-attack rates of immune cells
and antibodies is each assumed constant.

Figure 6 shows the changes in the number of infected agents when the virus repli-
cation rate is changed from 1.4 to 2.0. The number of infected agents is represented
as the percentage of the total population. When the virus replication rate is between
1.4 and 1.8, the number of infected agents increases, peaks, then decreases, ending
the pandemic. In such cases, the virus replication rate is not too large compared with
the virus attack rate of immune cells or antibodies. By contrast, when the virus repli-
cation rate is too large, such as 2.0, the entire population is eventually infected, and
the pandemic does not end. When the virus replication rate is too low compared with
the virus attack rate, the infection scale becomes too small to be called a pandemic.
In the present model, the cases where the virus replication rate is between 1.4 and
1.8 correspond to situations observed in the real world; thus, the model reproduces
the pandemic process’s fundamental behavior without introducing any macroscopic
assumptions.
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Fig. 6 Effect of the virus replication rate on the number of infected agents

‘We can also examine the numbers of newly infected and newly recovered agents.
The number of newly infected agents, which was initially one, increases drastically,
peaks, then decreases, a trend stemming from agent interactions (Fig. 7).

A similar trend of increase and decrease appears in the number of recovered agents
because of the activity of innate immune cells and antibodies (Fig. 8).

Virus replication rate
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Number of newly infected agents

Fig. 7 Effect of virus replication rate on the number of newly infected agents
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Fig. 8 Effect of virus replication rate on the number of newly recovered agents

4.1.3 The Relationship Between Newly Infected, Newly Recovered,
and Total Infected Agents

Figure 9 shows the numbers of newly infected, newly recovered, and total infected
agents as a function of time. Note that the total number of infected agents peaks at the
period between the peaks for the numbers of newly infected and recovered agents.
More precisely, the total number of infected agents reaches its maximum at the point
where the number of newly infected agents equals the number of newly recovered

Virus replication rate:1.8
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Time step

Fig. 9 Changes in the numbers of newly infected, newly recovered, and total infected agents
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Fig. 10 Change in the total number of infected agents and the difference between the numbers of
newly infected and newly recovered agents

agents (Fig. 10). This fact is evident from the defined expression of the total number
of infected agents, as shown in Eq. (6). Namely, when the total number of infected
agents reaches its maximum, its value at the current term equals that of the previous
period. Because the present model is assumed to neglect the death rate, this condition
is satisfied when the number of newly infected agents equals the number of recovered
agents, as seen in Eq. (6).

t+1 — Nt ' — Nt — Nt
]Vinfccu:d — “Vinfected oE Nncwly infected Nnewly recovered Nnew!y dead

()

where, Nifeced : Number of the infected
Nnewly infected * Number of the newly infected
NNewly dead : Number of the newly dead

t: period

4.1.4 The Ratio of the Recovered Agents with Antibodies to the Total
Number of Recovered Agents

Because the present model neglects death, all infected agents eventually recove until
the pandemic convergence. Whether the infected agents recover with antibodies
depends on the virus replication rate and agent-specific virus attack rate. As shown
in Fig. 11, in the case of low virus replication rates, such as 1.4, two-thirds of the



An Agent-Based Model of Infectious Diseases ... 185

Virus replication rate 1.4

——Recovered with antibody

——Recovered without antibody
Cumulative infected

o
Q
5
2
S —
T & 3
52 4
o o
3 2
o — J
g 1 P
-
G g - v
an O -
g ® 9 50 100 150 200 250
E Time step
=2

Fig.11 Changes in the numbers of recovered agents with and without antibodies and the cumulative
number of infected agents (virus replication rate: 1.4)

infected agents recover without antibodies. In contrast, with the replication rate being
1.8, more than 90% of recovered agents hold antibodies as shown in Fig. 12. In any
case, all infected people recover regardless of the emergence of antibodies. This
result indicates that whether those who recover with antibodies constitute most of
the population is not a crucial factor in determining the end of the pandemic.

Virus replication rate
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0.8
0.6

0.4

recovered agents
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0 50 100 150 200 250
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Number of recovered agents with
antibodies / total number of

Fig.12 Effect of virus replication rate on the ratio of the number of recovered agents with antibodies
to the total number of recovered agents
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4.1.5 Effect of the Virus Replication Rate on the Number of Infected
Neighbors

In the present model, agents who locate within a distance range of 5 m are called
neighbors. Neighbors who are infected are called infected neighbors.

Figure 13 demonstrates the effect of the virus replication rate on the average
number of infected neighbors. Note that this pattern is very close to those of the
infected and newly infected agents shown in Figs. 6 and 7. There exists a close rela-
tionship between the number of infected agents and the number of infected neighbors,
as shown in Fig. 14. The number of infected agents increases with the number of
infected neighbors, as shown in Fig. 15. The source of scattering in Fig. 15 is consid-
ered to be the scattering of the number of viruses at the time of infection. These results
indicate that the leading cause of infection spread is a healthy person encountering

Virus replication rate
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Fig. 13 Effect of the virus replication rate on the average number of infected neighbors
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Fig. 14 Relationship between the number of infected agents and the average number of infected
neighbors
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Fig. 15 Relationship between the number of newly infected agents and the average number of
infected neighbors

an infected person, the repetition of which increases the probability of other healthy
persons meeting an infected person, causing a progressive increase in the number of
infected agents.

4.1.6 Effect of Maximum Traveling Distance on the Number of Infected
Agents

Because the present model assumes the movement concerning distance and direction
is random, the probability of an uninfected agent meeting an infected agent depends
on the maximum traveling distance. The calculated results presented in the previous
sections correspond to cases where the maximum traveling distance is set as 100 m.
How the estimated numbers of various groups are affected by doubling the maximum
traveling distance can also be examined.

Figures 16 and 17 show the effect of the maximum traveling distance on the
numbers of total infected and newly infected agents, respectively. Note that both
factors became much more significant by doubling the maximum traveling distance.
The reason for this tendency is that, as shown in Fig. 18, as the maximum trav-
eling distance increases, the average number of infected neighbors increases, i.e., an
uninfected agent can meet with an infected neighbor more often.

4.1.7 Effect of Virus-Absorbing Rate on the Number of Infected Agents

Figure 19 shows the effect of the virus-absorbing rate on the number of infected
agents; the number of infected agents drastically decreases as the virus-absorbing
rate decreases. Thus, wearing masks or engaging in infection prevention measures
may be effective for decreasing the number of viral particles at the time of infection.
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Fig. 16 Effect of the maximum traveling distance on the total number of infected agents (virus
replication rate: 1.6)
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Fig. 17 Effect of the maximum traveling distance on the number of newly infected agents (virus
replication rate: 1.6)

4.2 Comparison of the Calculated Results with Real-World
Data

Figures 20 and 21 show the changes in the numbers of newly infected and recovered
people and in the number of currently infected people, respectively, observed in Japan
for the SARS-CoV-2 pandemic [1]. Note that the number of newly infected persons
peaked around April 15, the number of newly recovered persons peaked around May
10, and both indices were almost the same around April 30. Additionally, the number
of infected persons peaked around April 30.
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Fig. 18 Effect of the maximum traveling distance on the average number of infected neighbors
(virus replication rate: 1.6)
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Fig. 19 Effect of the virus-absorbing rate on the number of infected agents

Thus, the period at which the number of infected persons peaks coincides with
the period at which the number of newly infected persons and the number of newly
recovered persons are almost the same. This trend matches the calculated results
shown in Figs. 9 and 10. Thus, the model adequately reproduces the fundamental
behavior of the numbers of infected and recovered persons.



190 S. Ogibayashi
Newly Infected vs. Newly Recovered in Japan

New Cases vs. New Recoveries

(Number of newly infected vs. number of recovered and discharged patients cach day)
2500

2000
1500
1000

500

New Daily Coronavieus Cases = Cured

N K NS ol O o °"\°‘\"‘~Pl~f"°*d’ e ol
R A s

“ New Recoveries New Cases

Fig. 20 Changes in the numbers of newly infected and recovered people in Japan as of June 20,
2020 [17]

Active Cases in Japan

Active Cases
(Number of Infected People)

15k
:
= f'\\
T 10k /
E F,
: /
4
I sk f,
2
<
(%]
z

LD ST FEN P PP LIEP PR HITLROPHL PPN O

LT . . R L P S S S S S N N W S S S e N )
CE E F F F R FIFI N IS TR FFIFFFIFIFITTFTSY

“ Currently Infected

Fig. 21 Change in the number of currently infected people in Japan as of June 20, 2020 [17]



An Agent-Based Model of Infectious Diseases ... 191

4.3 Regulation and Mitigation of Movement and the Effect
of the Virus-Absorbing Rate

In this section, the effect of various factors on the emergence of re-increase in the
number of infected persons, referred to here as the second wave, is analyzed. The
re-increase in the number of infected persons after the complete convergence of the
pandemic, a real second wave, does not occur because the total number of viruses in
the system becomes almost zero after the convergence of the pandemic, as seen in
Fig. 4.

4.3.1 Effect of Regulating and Mitigating Movement

Figure 22 shows the changes in the number of infected agents under the base condi-
tion and the experimental conditions. In the experimental conditions, the maximum
traveling distance is decreased by 0.2 times or 0.1 times during the period between
t = 50 and t = 100 and is returned to the original value for the period after t =
100. Notably, when the maximum traveling distance is decreased by 0.2 times, the
number of newly infected agents once decreases and then increases again after the
end of the restriction, i.e., a second wave of the pandemic arises. In contrast, when
the maximum traveling distance is decreased by 0.1 times, i.e., when the regulation is
applied strictly, the emergence of a second wave of the pandemic is not remarkable.

Similar behavior is observed in the average number of infected neighbors and the
total number of infected agents, as shown in Figs. 23 and 24, respectively. Namely,
the emergence of a second wave of the pandemic is remarkable in the case of loose
regulation, whereas it is not impressive in the case of strict control. The reason for
this is that, in the case of strict regulations, the number of infected agents just before
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Fig. 22 Effect of temporary regulation of traveling distance and its release on the number of newly
infected agents (virus replication rate: 1.8)
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Fig.23 Effect of temporary regulation of traveling distance and its release on the number of infected
neighbors (virus replication rate: 1.8)
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Fig. 24 Effect of temporary regulation of traveling distance and its easing on the total number of
infected agents (virus replication rate: 1.8)

releasing the regulations is small. Moreover, the number of viruses in infected persons
is also small resulting in faster recovery, as suggested by Figs. 4 and 5. Therefore
the probability of meeting with an infected agent becomes low in the case of strict
regulation.

The number of recovered agents with antibodies is smaller in the case of strict
regulation (Fig. 25), indicating that the emergence of antibodies is not responsible
for preventing a second wave of the pandemic because more people may recover
without antibodies in the case of strict regulation.
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Fig. 25 Effect of temporary regulation of traveling distance and its easing on the number of
recovered agents with antibodies (virus replication rate:1.8)

4.3.2 Effect of the Virus-Absorbing Rate on Infection Behavior During
the Regulation and Mitigation of Movement

This section describes the effect of the virus-absorbing rate on infection behavior
during the regulation and mitigation of movement. Figure 26 shows the number of
newly infected agents for different patterns of decreasing the virus-absorbing rate.
Here, the maximum traveling distance is decreased by 0.2 times during only certain
periods. There are three periods: t < 50, t = 50-100, and t > 100. The virus-absorbing
rate is set for each period, and the notations “1-1-1,” “1-0.2-1,” and “1-0.2-0.2” in
Fig. 26 each represent a set of multiples for each period. For example, the notation
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Fig. 26 Effect of the virus-absorbing rate on the number of newly infected agents when movement
regulation is applied (virus replication rate: 1.8)
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Fig. 27 Effect of the virus-absorbing rate on the number of infected agents when movement
regulation is applied (virus replication rate: 1.8)

“1-0.2-0.2” represents a pattern in which the virus-absorbing rate is decreased by 0.2
times in the second and third periods.

In the case of the 1-1-1 pattern, a second wave of the pandemic arises in the period
after t = 100 where regulation is released (Fig. 26). In the case of the 1-0.2-1 pattern,
the emergence of a second wave of the pandemic is not remarkable, but the number
of newly infected agents increases slightly in the period after t = 100. In contrast,
in the case of the 1-0.2-0.2 pattern, a second wave of the pandemic does not arise,
indicating that strict prevention measures against infection are quite effective for
preventing the emergence of a second wave of the pandemic. This tendency is more
clearly observed in the total number of infected agents (Fig. 27).

A similar trend is also seen in the average number of infected neighbors (Fig. 28).
This resultindicates that the effect of the virus-absorbing rate on the number of newly
infected agents is as follows. The decrease in the virus-absorbing rate decreases the
number of infected persons’ viruses at the time of infection, which increases the
number of newly recovered agents due to the increase in the recovery speed, as
suggested by Fig. 5, thus decreasing the probability of a healthy agent meeting with
an infected agent.

4.4 Infection Behavior When Antibodies Do not Exist

Figure 29 shows the infection and recovery trends when antibodies do not exist.
Notably, the numbers of newly infected, newly recovered, and total infected agents
exhibit patterns similar to those shown in Fig. 9, which represents the case with
antibodies. This result indicates that the existence of antibodies is not an essential
factor in the mechanism of the fundamental behavior of increasing and decreasing
the number of infected agents.
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Fig. 28 Effect of the virus-absorbing rate on the average number of infected neighbors when
movement regulation is applied (virus replication rate: 1.8)
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Fig. 29 An example of the calculated numbers of newly infected, newly recovered, and total
infected agents in the case without antibodies

However, in the case without antibodies, the virus replication rate that is necessary
to reproduce the fundamental behavior of infection and recovery is 1.3 in Fig. 29,
which is significantly lower than that in the case with antibodies, indicating that
antibodies play a significant role in attaining stable recovery after infection. In other
words, if the virus replication rate is large such as 1.8, as is the case in Fig. 9, the
pandemic does not converge in the case without antibodies. In contrast, if the virus
replication rate is as small as 1.3, the pandemic does not occur in the case of existing
antibodies. Therefore, although antibodies are not essential for the fundamental
mechanism of infection and recovery, the role of antibodies might be indispensable
for the stable end of the pandemic under the given rate of virus replication.
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5 Infection Behavior When the Decreasing Increment
of the Number of Viruses Due to the Effect of Immune
Cells or Antibodies is Assumed to Be a Constant Value
Not Depending on the Number of Viruses

The calculation shown above assumes that the decreasing increment of the number
of viruses each period due to the effect of immunity is proportional to the number of
viruses as given in Eq. (2). A series of experiments was additionally conducted that
assumed that the decreasing increment of the number of viruses each period, which
is referred to as the virus-attack-count, is a constant value. In these experiments, the
constant value and the virus replication rate were widely changed. An example of
the calculated results for the number of newly infected persons, newly recovered
persons, and the number of currently infected persons is shown in Fig. 30. Here, the
constant value for the virus-attack count is assumed to be 200 for immune cells and
500 for antibodies. The virus replication rate is assumed to be 1.2. This combination
of the virus-attack count and virus replication rate corresponds to the condition where
infected agents are more likely to recover due to the immunity under this assumption.

As shown in Fig. 30, the number of newly recovered persons never exceeds the
number of newly infected persons, and the number of infected persons never reduces,
meaning that the pandemic never converges. The reason for this trend is that, in many
infected people, virus elimination by immunity cannot keep up with virus replication
and thus the number of viruses continues to increase. This result indicates that the
model structure in which the effect of immunity increases with an increasing number
of viruses is indispensable for reproducing the convergence of the pandemic. It is
considered that the factors that realize this structure in the human body are the body
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Fig. 30 An example of the calculated numbers of newly infected, newly recovered, and total
infected agents in the case where the decreasing increment of the number of viruses due to immunity
is assumed to be a constant value
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temperature rise due to infection and the formation of antibodies, which let us discuss
in the next section.

6 Discussion

6.1 Fundamental Mechanisms of Infection Spread
and Convergence

The essential factors that characterize the infection spread and convergence are the
numbers of newly infected, newly recovered, and total infected persons. These factors
are related to each other. Namely, the time step at which the number of infected agents
peaks coincides with the point at which the number of newly infected agents equals
the number of newly recovered agents, as explained in Figs. 9 and 10. After this
point, the number of newly recovered agents exceeds the number of newly infected
agents, resulting in a decrease in the number of infected agents and the convergence of
the pandemic. The present model successfully reproduces these features in the case
where immunity effect is assumed to be proportional to the number of viruses as
given in Eq. (2). It is also notable that these trends consistently emerge irrespective
of the existence of antibodies, indicating that the existence of antibodies is not an
essential factor for the convergence of the pandemic. Furthermore, the pattern of
the average number of infected neighbors is highly similar to that of the number of
infected and newly infected agents, as shown in Figs. 6, 7, and 13, and there is a
positive correlation between both indices, as shown in Figs. 14 and 15.

By contrast, if the model assumes that the immunity effect, namely the decreasing
increment of the number of viruses each period, is constant, the number of newly
recovered agents never exceeds the number of newly infected agents, and the model
fails to reproduce the convergence of the pandemic as explained in Fig. 30.This result
indicates that the model structure in which immunity effect increases with increasing
number of viruses is indispensable for reproducing the pandemic convergence.

These findings indicate that the fundamental mechanisms of infection and conver-
gence are as follows. Even in the case where there is initially only one infected person,
ifthe infected and uninfected persons move around, they inevitably meet within a few
meters at some point, causing uninfected persons to become infected. The possible
infection routes include airborne infection, splash infection and contact infection.
Either way, if a healthy person meets with an infected person in close proximity,
infectious viruses will be expelled from the infected person in the form of a cough
or forceful exhalation, or by breathing, and will be transferred to the body of the
healthy person, causing an infection. Thus, if the total number of infected persons
doubles, the probability for a healthy person to meet an infected person also doubles,
and the number of infected persons increases progressively. During the spread of
infection, persons who are infected early may recover, and the number of recovered
persons increases over time. The increase in the number of newly recovered persons
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decreases the probability that a healthy person will meet an infected person, causing
the rate of increase in the number of new infections to slow down. At some point, the
number of newly infected persons peaks, then decreases as the number of recovered
persons increases, which is indispensable for the convergence of the pandemic.

It is also noted that in the case of assuming that the immunity effect is constant
and does not depend on the number of viruses, the number of recovered persons
never exceeds the number of infected as shown in Fig. 30. This result indicates
that the model structure in which immunity effect increases with increasing number
of viruses is indispensable for reproducing the pandemic convergence. The factors
that realize this structure in the human body are considered the body temperature
rise due to infection and the emergence of antibodies. According to the literature
[18], the immunity effect increases five-fold in response to a 1 °C increase in body
temperature. It is also well known [17] that innate immune cells are the first to attack
the viruses, and if necessary, antibodies emerge after a specific time, and they join
the fight against the viruses. Thus, if an individual is infected, resulting in an increase
in the number of viruses in the body, the body temperature will rise, which increases
the immunity effect due to innate immune cells. In many cases, people will recover
due to this effect of innate immune cells. For people with repeated infection or weak
immunity, this effect of innate immune cells is not enough to keep up with the virus
replication and antibodies will emerge and join the fight against viruses. Therefore,
it can be said that humans have a mechanism for increasing immunity by increasing
body temperature and producing antibodies if necessary, when the number of viruses
in the body becomes large due to infection and replication of viruses. Thanks to this
mechanism, we can understand that humans will recover due to the immunity effect in
most cases unless repeated infections. For this reason, it is considered that monitoring
body temperature might be an effective measure to identify individuals’ state of being
infected.

In summary, the fundamental mechanism of infection spread is the progressive
increase in the probability of a healthy person meeting an infected person. The
mechanism of convergence is that this probability decreases during the infection
process as a result of an increase in the number of recovered people. Moreover,
the body temperature rise due to an infection that increases the immunity effect is
considered to play an essential role in human recovery and the convergence of the
pandemic.

Notably, the existence of antibodies was found not to be essential for this funda-
mental mechanism. However, the emergence of antibodies may increase the effect
of immunity with an increasing number of viruses, thereby increasing the number of
recovered persons and promoting the recovery. The emergence of antibodies may be
an indispensable factor for the convergence of the pandemic in the case of the virus
whose replication rate is significant.

Itis also notable that, once the pandemic ultimately converges in a system, an addi-
tional pandemic, namely, a second wave, never occurs unless infected people outside
of the system newly enter into the system because the total number of viruses in a
closed system decreases during the pandemic process due to the effect of immunity as
shown in Fig. 4. This fact indicates that identifying and isolating infected persons
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at national borders, such as at airports, is vital in preventing the promotion of the
pandemic and in aiding its convergence.

6.2 A Proposed Strategy for Controlling the Pandemic While
Saving the Economy

Restricting the movement of people is an effective measure to control the spread
of infection. However, movement restrictions cause economic activity to stagnate,
thus weakening the economy. To control the spread of infection while minimizing
economic deterioration, it is essential to minimize the probability that healthy people,
who are the majority, will encounter infected people, who are the minority.

Therefore, the most fundamental strategy to control the spread of infection while
minimizing the economy’s deterioration is identifying the infected persons and
isolating them from healthy people or exclusively regulating their movement. It is not
necessary to control the movement of all people. Identifying infected persons can be
done by monitoring body temperature in addition to PCR tests. Thus, the following
measures are proposed as effective ways of both preventing economic deterioration
and controlling infection spread. The following methods are also adequate for the
vaccinated person because the effect of the vaccine is not to prevent infection but to
promote recovery.

1. Identifying infected persons and regulate their social movement as completely
as possible. This measure is particularly essential at national borders, such as
airports to prevent infected individuals from entering domestic regions. Iden-
tification of infecied persons can be made not only by a PCR test but also
by measuring body temperature, which is much easier to apply for all people.
Establishing a PCR test system in society is also preferable so that anyone who
wants to take a PCR test can, at any time, in a convenient location.

2. Preventive measures in densely-populated places, such as identifying infected
people, ventilation of the area, and sterilizing at the entrance. Particularly essen-
tial is that commercial establishments should measure the body temperatures of
customers at the entrance and refuse entry to anyone with a high body tempera-
ture because they might have an infection. The critical temperature for refusing
entry could be around 37.5 degrees, but irrespective of the absolute value, this
measure will reduce the probability of a healthy person encountering an infected
person, thereby working to effectively control the spread of infection.

3. Individual persons recognizing the state of infection by self-monitoring body
temperature for self-controlling social movement. Suppose many infected indi-
viduals self-regulate their behavior in society based on monitoring body temper-
ature. In that case, it may greatly reduce the social probability of a healthy person
encountering an infected person, thus reducing the number of newly infected
people.



200

7

S. Ogibayashi

Wearing masks or face shields in densely-populated places because it reduces
the viruses emitted from an infected person and absorbed by a healthy person.
However, society should not force people to do this uniformly, because the need
depends on individuals and the location.

Conclusions

An agent-based infection model that incorporates the roles of immune cells, anti-
bodies, and viral particles was constructed. Using this model, the effect of various
factors on the spread and convergence of infection was analyzed, and the calculated
results were compared with real-world data. The obtained results are summarized as
follows.

1.

Present model well reproduced the qualitative feature of the chronolog-
ical patterns in the numbers of newly infected, newly recovered, and total
infected agents observed in the actual world, when immunity effect is assumed
proportional to the number of viruses.

The fundamental mechanism for the spread of infection is a progressive increase
inthe probability of a healthy person encountering an infected person and that the
primary mechanism for convergence of the pandemic is a progressive decrease
in the above probability as the number of recovered persons increases. The
existence of antibodies is not a fundamental cause of pandemic convergence, but
it stabilizes convergence by increasing the recovery speed when virus replication
rate is large.

The model structure in which the immunity effect increases with an increasing
number of viruses is indispensable for reproducing the pandemic convergence.
The temperature rise caused by infection and the emergence of antibodies realize
this structure in the human body, indicating that these factors are indispensable
for an individual’s recovery and the pandemic convergence of society.

This model also reproduced the re-increase in the number of infected persons
(i.e., second wave) after the mitigation of temporary regulation of peoples’
movement, which is observed when activity limitation and wearing masks or
face shields are not strict. However, once the pandemic ultimately converges, the
second wave never occurs unless infected people outside of the system newly
enter into the system because the total number of viruses in the closed system
decreases during the pandemic due to immunity.

To control the spread of infection while minimizing economic deterioration,
it is essential to identify infected persons, limit the behavior of these infected
persons only, and minimize the probability that healthy persons will encounter
infected persons. The identification and isolation of infected individuals are
especially essential at national borders, such as at airports.

Monitoring body temperature is considered effective in identifying a person’s
state of being infected, where the higher the temperature, the larger the number
of viruses the person might hold. Commercial establishments should apply this
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measure at the entrance, including refusing entry of infected persons. As an
Individual measure, self-monitoring body temperature for self-controlling social
movement is also considered adequate for the pandemic convergence.
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