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The influence of temperature on the grain growth behavior in Monte Carlo simulation has been studied
based on the original Potts model proposed by Anderson et al. Grain growth kinetics in Monte Carlo simula-
tion are represented in the non-dimensional form by non-dimensional grain radius and the ratio of Monte
Carlo step to total orientation number Q. It has been revealed that the influence of temperature in Monte
Carlo simulation could be mainly introduced through the correspondent relationship between Monte Carlo
Step and real time, rather than through the transition probability of re-orientation attempts. A new equation
for the relationship between Monte Carlo Step and real time has been derived based on the idea of the law
of similitude in grain growth. The grain growth during cooling for the actual time-length system has been
estimated using newly derived equation and the estimated grain size as a function of temperature showed
quantitatively good agreement with the observed results reported in the literature when lattice constant in
the calculation system as a characteristic length for conversion was set to be 0.015 cm which was a half of
the initial grain diameter in the real system.
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1. Introduction

Computer simulation'™® is widely used to clarify the
influence of various factors on the crystal grain growth
behavior, because the material properties of final steel prod-
uct may greatly depend on the size of crystal grain. Com-
puter simulation related to the crystal grain growth is
divided into two stages, the v grain formation. process dur-
ing final stage of solidification and the ¥ grain growth
process during cooling after the complete solidification.
Most of the previous studies on grain growth simulation,
however, have dealt with the process at constant tempera-
ture, and the grain growth behavior during cooling from the
state just after solidification to final product are not well un-
derstood.

Among various simulation models of the crystal grain
growth such as the vertex model,*” diffuse interface
model,® efc., the most promising is the Monte Carlo
method proposed by Anderson et al. as the Potts model?
and its modified models.”'? Although Monte Carlo method
has presented successful results in simulating grain growth
behavior such as the kinetics of grain growth under isother-
mal conditions, pinning effect by second phase particles,
etc., there are few reports on the quantitative analysis of
grain size and its dependency on temperature, mainly
because the correspondence between the Monte Carlo Step
and real time and the mechanism of the influence of tem-
perature on the calculated results in the simulation are not
well understood.
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This paper presents studies on the influence of tempera-
ture in the Monte Carlo simulation and on the correspon-
dence between the Monte Carlo Step and real time, from
the viewpoint of the development of effective method in
simulating grain growth behavior during cooling from the
state just after solidification to final product. The influences
of basic calculation conditions on the simulated results
were also studied in order to confirm the validity of the
present analysis.

2. Simulation Method

2.1. Monte Carlo Simulation Method

A continuum microstructure is mapped onto a discrete
lattice. Each lattice site is assigned a positive integer
between 1 and Q corresponding to the orientation of the
grain. The kinetics of grain boundary motion are simulated
by employing a Monte Carlo technique, in which a lattice
site is selected at random, and a new trial orientation is also
chosen at random from one of the other (Q—1) orientations.
The change in energy caused by the change in orientation is
then calculated according to Eq. (1), where J is a positive
constant in proportion to boundary energy per unit area, s,
is the new trial orientation of the site, s; is the orientation of
the nearest neighbor sites and 0, is the Kronecker delta.
The sum is taken over all nearest neighbor sites. If the
change in energy, AE, is less than or equal to zero, the
re-orientation is accepted. If the change in energy is greater
than zero, the re-orientation is accepted with the transition
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probability, P, given by Eq. (2) where kg is the Boltzman
constant and T is the temperature. This procedure is repeated
Nigiee times where Ny, is the total number of sites in the
calculation system. The unit of time is defined as 1 Monte
Carlo Step (MCS), which corresponds to N, re-orienta-
tion attempts.

P=exp(—AE/kT) (AE>0)
P=1 (AE=0)

2.2.

Simulations were performed on 2-dimensional hexagonal
lattice of size of N=200* as shown in Fig. 1. Each lattice
was initially assigned one of Q orientations randomly. In
order to prevent the impingement of grain of the same ori-
entation too frequently, a sufficiently large number of grain
orientations (Q) was chosen, typically Q=64. However,
various values of Q as 16, 32, 64, 128, 256 were also tested
in order to examine the influence of Q on the kinetics of
grain growth. Grain radius R was calculated assuming one
lattice area as a unit of the area.

Moreover, in order to confirm the validity of the calcula-
tion results by comparing them with the previous study
results in the literature,"*'1? also studied were the behav-
ior of a shrinking circular grain where Q=2 was chosen,
and the pinning effect of second phase particles on grain
growth behavior where J=—20 was assigned at one or
three lattice sites corresponding small and large particles.
In case of simulation with the presence of second phase
particles, the sites of the particles were selected at random
and not allowed to switch during re-orientation attempts.
The particle/matrix interfacial energy was assumed to be
the same as the matrix grain boundary energy, J. The parti-
cle concentration was defined as the number of sites for
particles divided by total number of the sites in the calcula-
tion’ ]Vlatﬁce'

In most of the calculation except for studying the influ-
ence of temperature, the transition probability given by Eq.
(2) was assumed to be zero when the change in energy as-
sociated with the re-orientation was greater than zero.

In order to examine the influence of the temperature, the
influence of J/k;T on the average grain diameter and the
transition probability for positive energy change were stud-

Condition of the Simulation
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Fig. 1. 2-Dimensional hexagonal lattice used in the calculation.
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ied. In addition, the correspondence of MCS and real time
was discussed and a new method of converting calculated
grain diameter to the grain diameter in real space has been
derived. This new method was validated by comparing the
calculated grain diameters during cooling with those calcu-
lated by Yoshida et al.’s equation'® which were reportedly
in good agreement with the observed results presented by
Maehara et al.’®

3. Simulation Results

3.1. Influence of the Number of Orientations on Grain

Growth Kinetics

Calculated microstructures for various values of the
number of orientations, O, at 1000 MCS are shown in Fig.
2. It is obvious that grain diameters at constant MCS
become smaller with increasing Q. In the Monte Carlo sim-
ulation, grain radius is defined as shown in Eq. (3) and
grain growth kinetics are expressed by using average grain
radius R. Calculated grain growth equations are summa-
rized in Table 1.

where, S: area of one lattice
d=VS: lattice constant
R: grain radius
N: number of adjacent lattice sites having same ori-
entation.
In Table 1, grain growth equations are expressed in the
form of R/d=k(MCS)Y" or R/d=k(MCS/Q)", where R is the
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Fig. 2. Influence of O on grain structure at 1 000 MCS.

Table 1. Grain growth equation calculateti for various Q
values in the form of either R/d=k(MCS)" or
RId=KMMCS/QY".

Trial Q@ |Grain growth Eq |Modified Eq
orientation
16 |0.36(MCS)°*°  11.08(MCS/Q)**°
~a 32 |0.30(MGS)>*  |1.10(McS/Q@)>Y
: 64 [0.28(MCS)**  [1.15(MCcS/Q)**
randum rET) .38
128 |0.24(MCS)* 1.17(MCS/Q)
256 0.19(MCS)™*  [1.16(MCS/Q)"*
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average grain radius and d is the lattice constant in the cal-
culation system defined by the square root of the one lattice
area as given by Eq. (3). As shown in Table 1, when grain
radius is expressed as a function of MCS, coefficient k de-
creases with increasing . When grain radius is expressed
as a function of MCS/Q, on the other hand, coefficient &
does not depend on Q when Q is greater than 64 and the
following grain growth equation is obtained, where expo-
nent is 0.33.

RId=1.16(MCS/Q)**

Regression analysis for grain growth taking account of
initial grain size was also performed for 0=64 and the fol-
lowing equation was obtained, where initial grain radius R,
in the calculation was defined as the radius corresponding
to one lattice area. The relationships between the grain
radius and MCS/Q based on the calculation and regression
equation are compared in Fig. 3.

(RId)* T —(Ry/d)*"=1.24(MCS/Q)

The exponents of grain growth obtained by the regres-
sion analysis are 0.33-0.36 as shown in Eqgs. (4) and (5)
which are smaller than 0.5. As shown in Table 1, the expo-
nent increases with decreasing Q. As a limiting case where
0=2, a shrinking behavior of a circle has been simulated.
The area of the circle decreases in proportion to MCS as
shown in Fig. 4 and the regression equation shown in Eq.
(6) was obtained, where S is the area of one lattice in the
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Fig. 3. Relationship between grain radius and MCS/Q, where
grain radius is normalized by lattice constant in the cal-
culation system and regression is performed taking into

account initial grain size.

calculation system. This means that the exponent of grain
diameter in case of a shrinking circle is 0.5 which is in
good agreement with that of the classical grain growth
equation where the quadratic growth amount is proportional
to time.

AIS—AyYS=—2.55MCS ..o 6)

where, A: area of a circle
A,: initial area of a circle
S one lattice are in the calculation system.

An example of the distribution of grain size normalized
by average grain radius is given in Fig. 5 which shows
nearly log-normal distribution but slightly differs as
reported by Srolovitz et al.,” in that the calculated distribu-
tion function is not symmetric in log-space and has an
apparent upper cut-off and peaks more sharply than the log-
normal distribution. It is also noted that the distribution of
grain size is almost independent of MCS. This result sug-
gests that the grain growth proceeds with the increase in
diameter of large grains while small grains are diminishing.
Close observation of Fig. 5 reveals that a small peak which
arises in the frequency of the number of very small grain
moves toward smaller grain size side with the increase in
MCS. This tendency is considered to be caused because the
diameter of relatively smaller grain decreases while that of
larger grain increases in the process of grain growth.

3.2. Pinning Effect of Second Phase Particles on Grain
Growth

It is reported in the literature' ' that the Monte Carlo
simulation can also model grain growth in the presence of
particle dispersion. In the present study, influences of the
size and concentration of particles on grain growth behav-
ior were analyzed, in order to confirm that the present cal-
culation method is also effective in simulating the pinning
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Fig. 4. Kinetics of a shrinking circular grain, showing that the
area decreases linearly with time.
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where grain diameter is normalized by lattice constant in
the calculation system (0=64).
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Fig. 7. Influence of particle size on pinning effect during grain
growth, where grain diameter is normalized by lattice
constant in the calculation system (Q=64).

effect of second phase particles.

In case of the presence of particles, grain initially grows
with increasing MCS, but it reaches a constant pinned grain
size when MCS is large enough. The pinned grain size is
smaller when the particle concentration is larger, as shown
in Fig. 6. It was also confirmed that, with the same particle
concentration, the smaller the particle size is, the smaller
the pinned grain size becomes as shown in Fig. 7. More-
over, the calculated results indicate that most of the parti-
cles locate on the grain boundary as shown in Fig. 8. The
fraction of particles existing on the grain boundary de-
creases with increasing time as shown in Fig. 9 and exceeds
90%, which became greater with increasing particle con-
centration.

3.3. Influence of Temperature in the Monte Carlo

Method

One of the most serious problems of Monte Carlo simu-
lation for grain growth is that the correspondence between
Monte Carlo Step and real time and the mechanism of the
influence of temperature on the calculated results in the
simulation are not well understood and hence the method
for quantitative analysis of grain size in real space taking
into account its dependency on temperature has not been
well developed.

In the algorithm of Monte Carlo simulation, there could
be two possibilities in introducing the influence of tempera-
ture into the calculated results. First, the influence of tem-
perature could be introduced in the calculation through the
transition probability in re-orientation attempts. Second, it
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Grain structure and location of particles represented by
dark spots, showing that particles are likely to locate at
grain boundary (Q=64, MCS=3000, f: particle concen-
tration).
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Fig. 9. Changes in fraction of particles on grain boundary with
MCS for various particle concentrations (Q=64).

could be introduced through the correspondent relationship
between the Monte Carlo Step and real time.

There are some reports on the relationship between the
Monte Carlo Step and real time.*'*'> None of them, how-
ever, provide reliable evidence that the relationship has
been well validated. Kobayashi et al.'® explained the influ-
ence of temperature in Monte Carlo method from the view-
point of transition probability. They'? propose a new algo-
rithm for transition probability of re-orientation, in which
an activated state is introduced into the algorithm of defin-
ing transition probability and they point out that the influ-
ence of temperature can be well introduced into the simula-
tion by their new algorithm. It seems reasonable to take into
account the activation energy in the definition of transition
probability, although the original Potts model reported by
Anderson et al.? does not introduce activation energy in
the transition probability. In the present study, however, the
possibility of introducing the influence of temperature into
the simulation algorithm is discussed based on the original
Potts model from the viewpoint of transition probability
and correspondent relationship of the Monte Carlo Step
with real time.

3.3.1. Influence of Temperature through Transition Proba-
bility of Re-orientation

As the transition probability in re-orientation attempts in
case of the original Potts model is a function of J/kzT as
shown in Eq. (1), the influence of J/k;T on grain size and
transition probability was analyzed.

Grain structures for various values of J/kzT at 2000 MCS
with Q=64 are presented in Fig. 10, showing that fine
structure arises near the grain boundary when JkgT

© 2008 [SIJ



ISIJ International, Vol. 48 (2008), No. 3

B

Influence of J/k,T on calculated grain structure (Q=64,
MCS=2000).

Fig. 10.

becomes less than 2.0 and it becomes a dominant structure
when J/kgT is 1.6 or below. This comes from the fact that
the transition probability in re-orientation attempts for posi-
tive energy change given by Eq. (2) increases with increas-
ing temperature.

The transition probability for positive energy change has
been evaluated in the simulation by counting the frequency
of accepting the re-orientation attempt when the energy
change is positive. The calculated transition probability
drastically increases with decreasing J/kgT when J/kgT is
less than 1.6 as shown in Fig. 11. This tendency in transi-
tion probability is in good agreement with the dependency
of grain structure on J/kzT as shown in Fig. 10. The calcu-
lated results shown in Fig. 10 that fine structure that arises
near the grain boundary becomes dominant when J/k;T is
less than 1.6 seems to be reasonable because the fluctuation
of re-orientation at higher temperature sometime allows for
the site to become a new small grain even though the asso-
ciated energy change is positive and this probability be-
comes larger with increasing temperature. Therefore, the
well known fact that grain growth rate increases with in-
creasing temperature could not be explained by the factor
of JlkyT in the transition probability of the Potts model, as
long as the transition probability given by Eq. (2) is
assumed.

3.3.2. Relationship between the Monte Carlo Step and
Real Time

It is well known that the grain growth proceeds due to
the jumping of an atom from one side of the grain bound-
ary to the other side with some transition probability which
depends on the activation free energy. The atomic jump fre-
quency, V, is related to macroscopic diffusion coeflicient,
D, as shown in Eq. (7) where « is the lattice constant.

where, D=D, exp(— AE/kgT).

In the Monte Carlo method, grain growth kinetics are
expressed as a function of MCS/Q as shown in Fig. 3. If the
probability of accepting re-orientation attempts is assumed
to be proportional to 1/Q, MCS/Q corresponds to the jump-
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Fig. 11. Probability of orientation exchange as a function of

JlkgT when energy change is positive.

ing times during MCS. Therefore, MCS/Q corresponds to
vt=6Dt/a, which is the jumping times during f in real sys-
tem. The question is how the lattice constant should be
defined in the relationship between MCS/Q and vt, because
the jumping distance for an atom is the lattice constant a in
real system, while in the simulation, the corresponding
jumping distance due to one re-orientation attempt is the
lattice constant d in the calculation system.

According to classical grain growth theory, grain growth
kinetics are represented by Eq. (8), where R is average
grain radius, R, is initial grain radius, ¢ is interfacial
energy, ¥ is molar volume, R, is gas constant and k; is a
non-dimensional parameter. When grain radius R is repre-
sented by a non-dimensional radius R'=R/d, where d is a
characteristic length for conversion, we can obtain Eq. (9)
which shows that the law of similitude in grain growth is
expressed by a non-dimensional factor Dt/d”.

RP—=RP=kyDl oo 8)
where, ky=0V/aR,T,

R?—R,=KDildP)
where, R'=R/d.

Equation (9) for grain growth in the real system should
be compared with Eq. (5) for grain growth obtained in the
calculation system. Comparing both equations, it would be
reasonable that the characteristic length for conversion from
the calculation system to the real system can be set to be
the lattice constant in the calculation system, and the rela-
tionship between MCS and real time can be given by Eq.

(10).
6Dt

MCS1 Q== (10)

where, d: lattice constant in the calculation system.

3.4. Analysis of Grain Growth during Cooling and
Comparison with the Data in the Real System

An observed relationship between the grain diameter and
temperature for grain growth during cooling with a constant
cooling rate from the state just after solidification has been
presented by Maehara et al.'” where the initial grain diame-
ter was 0.03 cm. Yoshida ef al.'® has derived a prediction
equation for grain growth during cooling based on the clas-
sical grain growth theory as shown in Eq. (11) and pointed
out that the calculated grain size according to Eq. (11)
showed good agreement with the observed result presented
by Maehara et al.'> as shown in Fig. 12.
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Fig. 12. Grain growth behavior during cooling with the cooling
rate of 0.28 K/s, experimentally measured by Maehara
et al. (dark spots) and calculated by Yoshida er al’s
equation based on classical grain growth model (solid

line).
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Fig. 13. Calculated grain diameter during cooling when lattice

constant is 0.015cm, compared with Yoshida et al’s
equation based on classical grain growth model (cooling
rate=0.28 K/s, initial grain diameter=0.03 cm).

In the present study, relationship between MCS and tem-
perature during cooling has been derived as shown in Eq.
(12) by transforming equation, Eq. (10). The grain growth
during cooling has been analyzed by Monte Carlo method
based on Eq. (12) by setting Dy=1.6cm’/s, QO /R~
1.91X10*K and R,=0.015cm which are the same values

used in Yoshida ef al’s analysis,'” and calculated results-

have been compared with the predicted value calculated by
Yoshida et al.’s equation'®? which can be used as an alterna-
tive for Machara’s observed result.'” In the calculation, the
lattice constant in the simulation system was changed be-
tween 0.01 cm and 0.1 cm and the grain diameter in the real
system was calculated based on Eqg. (12), which defines the
relationship between MCS/Q and temperature, and Eq. (5),
which defines the relationship between grain radius and
MCS/Q, using T=0.28K/s, T,=1708K and R;=0.015cm
which are the same condition as Maehara’s data.'*!>

I
where, 7}: initial temperature
Ty temperature at MCS
T: cooling rate
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constant is 0.03 cm, compared with Yoshida ef al’s
equation based on classical grain growth model (cooling
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Fig. 15. Calculated grain diameter as a function of cooling rate

at 1273 K when lattice constant is 0.015 cm, compared
with Yoshida et al.’s equation based on classical grain
growth model.

D=D,exp(—Qyu/R,T).

Calculated grain diameter during cooling compared with
Yoshida et al.’s equation is shown in Fig. 13 as a function
of quenching temperature. As shown in Fig. 13, the calcu-
lated relationship between the grain diameter and the
quenching temperature is in good agreement with Yoshida
et al.’s equation when the lattice constant as a characteristic
value for conversion is set to be 0.015 cm which is half of
the initial grain diameter. For comparison, the calculated
grain diameter as a function of quenching temperature
when the lattice constant is set to be 0.03 cm is shown in
Fig. 14. It is obvious that the calculated grain diameter
greatly differs with the Yoshida ef al.’s equation when lat-
tice constant is other than 0.015 cm. Figure 15 shows the
relationship between the grain diameter and the cooling rate
at 1273 K when the lattice constant is again set to. be
0.015cm compared with Yoshida et al’s equation. It is
noted that the calculated result with the lattice constant of
0.015cm is again in good agreement with Yoshida et al.’s
equation.

Figures 16 and 17 show the influence of initial grain size
and cooling rate on the grain diameter calculated by the
Monte Carlo method of the present study and the one calcu-
lated by Yoshida et al.’s equation, respectively. It is noted in
these results that the calculated relationship between the
grain diameter and the temperature in the present study
shows good agreement with Yoshida et al.’s equation for
various initial grain sizes and cooling rates. It is also noted

© 2008 ISIJ
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Fig. 16. Influence of initial grain size on grain diameter during cooling from 1704 K for cooling rate of 0.28 K/s and
5K/s calculated in the present model with lattice constant of 0.015 cm.
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Fig, 17. Influence of initial grain size on grain diameter during cooling from 1704 K for cooling rate of 0.28K/s and

5 K/s calculated by Yoshida et al.’s equation.

in Fig. 16 that the grain diameter at a cooled temperature is
influenced by the initial grain size when the growth amount
during cooling is relatively small because of large cooling
rate (5K/s), although the influence of initial grain size is
negligibly small when cooling rate is very small (0.28 K/s).

3.5. Discussions
3.5.1.  Mechanism of Grain Growth in Monte Carlo Simu-
lation

In order to understand the basic mechanism of grain
growth in the Monte Carlo method, the transition probabil-
ity of orientation exchange has been examined. The transi-
tion probability is defined as the number of orientation-ex-
change sites per MCS, where re-orientation attempts were
accepted, divided by the total number of lattice sites. It was
revealed that the transition probability decreases with in-
creasing time or grain radius during grain growth and is in-
versely proportional to O as shown in Fig. 18. Regression
analysis revealed that the transition probability is quantita-
tively represented by Eq. (13)

0.60
p=-——R/d)>*
Q

If the transition probability at a lattice site is denoted by
p, the number of orientation-exchange sites per MCS is rep-
resented by N2 Where, N, is the total number of lat-
tice sites in the calculation system. In addition, if N stands
for the average number of sites per grain, the average num-
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ber of grain is expressed by N/ N and the number of ori-
entation-exchange sites per MCS per grain is expressed by
Np. In the normal grain growth, orientation-exchange oc-
curs in the direction of grain growth. Therefore, the in-
creased increment of N during d(MCS), which is denoted
by dN, is equal to Npd(MCS). Thus, we can obtain Egs.
(14) and (15) which represent simplified grain growth
model in Monte Carlo simulation.

B N s (14)
d(MCS)
R R (15)
d(MCS) 2
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Solving Eq. (15) by substituting Eq. (13) for p, Eq. (16)
is obtained. The average grain radius predicted by Eq. (16)
is shown in Fig. 19 as a function of MCS/Q, in comparison
with those calculated by Monte Carlo method for =64
and 256. Although the predicted average grain radius is a
little smaller than the calculated radius, it seems to be con-
cluded that the simplified grain growth model presented by
Eq. (15) explains most of the grain growth behavior in
Monte Carlo simulation. The discrepancy between the pre-
dicted radius and the calculated radius seems to be due to
the influence of size distribution on the grain growth behav-
ior.

(BRI —(RyJdy**=1.04(MCS/Q) ..oovroo... (16)

3.5.2. Influence of Temperature on Monte Carlo Method

In the present study, the influence of temperature on the
Monte Carlo method was discussed based on the original
Potts model where transition probability is given by Eq. (2).
As a result, the influence of temperature could not be ex-
plained by the factor of J/k,T in the transition probability of
the Potts model, as long as the transition probability given
by Eq. (2) is assumed, and it was revealed that the influence
of temperature can be well explained by introducing a new
method of converting the Monte Carlo Step to real time.

Although the new method of converting the Monte Carlo
Step to real time proposed in the present study has provided
a successful result in explaining the actual grain growth
behavior during cooling observed by Maehara et al.,"
there are still some discrepancies remained for full under-
standing of the influence of temperature on grain growth in
Monte Carlo simulation. Firstly, the present algorithm can-
not explain the influence of interfacial energy on grain
growth, because there is no factor of interfacial energy in
Egs. (10) and (12). The classical grain growth model pre-
sented by Yoshida et al.,' on the other hand, includes inter-
facial energy as given by Eq. (11). In fact, it has been
reported in the literature'® that grain growth rate decreases
by the addition of phosphorous, and Yoshida et al.'® point
out that one of the reasons for this influence is due to the
decrease in interfacial energy by the addition of phospho-
rous. Secondly, the present algorithm assumes that the tran-
sition probability is expressed by Eq. (2), in which AE is
the difference in interfacial energy between the nearest
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neighbors before and after the orientation exchange. This
means that the present algorithm which is based on the
original Potts model assumes to neglect activation energy. If
the transition probability is assumed to be dependent on
activation energy, influence of temperature could be
explained to some extent by the dependency of transition
probability on temperature, as pointed out by Kobayashi
et al.'? ‘

From these arguments, further study from the viewpoint
of transition probability would be required for the full un-
derstanding of the influence of temperature on grain growth
in Monte Carlo simulation, although the influence of tem-
perature is considered to be mainly explained through the
correspondent relationship of the Monte Carlo Step with
real time.

4. Conclusions

Grain growth behavior has been analyzed using the Potts
model of the Monte Carlo method proposed by Anderson
et al. and it has been revealed that grain growth kinetics can
be represented by the relationship between non-dimensional
grain radius and MCS/Q. The validity of the present calcu-
lation has been confirmed from the viewpoint of the pin-
ning effect of second phase particles and the frequency dis-
tribution of grain diameters. Based on these results, the
influence of temperature in the Monte Carlo method has
been discussed. The influence of temperature could be
introduced in the Monte Carlo simulation through the cor-
respondent relationship between the Monte Carlo Step and
real time, because the influence of temperature could not be
explained through the transition probability in re-orienta-
tion attempts. A new equation that represents the relation-
ship between MCS/Q and real time has been derived based
on the idea of the law of similitude in grain growth. The
grain growth during cooling for the real time—length system
has been estimated using a newly derived equation for the
relationship between MCS/Q and temperature during cool-
ing and the calculated relationship between the grain diam-
eter and temperature has been compared with Yoshida
et al.’s equation as an alternative for Maehara’s observed
results.'® It has been revealed that calculated grain diame-
ters in relation to temperature and cooling rate were quanti-
tatively in good agreement with those calculated by Yoshida
et al.’s equation when the lattice constant in the calculation
system as a characteristic length for conversion from the
calculation system to the real system was set to be 0.015 cm
which was half of the initial grain diameter in the real sys-
tem.
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